Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Anthropogenic pollution affects environments differently depending on proximity to pollution source, exposure route, and species ecology. Thus, understanding organism’s ecological role and exposure route to contaminants is central to assessing pollution impact. Treated municipal wastewater releases contaminants into waterways and alters microbial communities. Plants absorb contaminants and expose animals through foraging and nest-building activities. Nesting ecology differences of ground vs wood cavity-nesting bees offers insight into niche-specific susceptibility to pollution. Because contaminants bind to soil strongly, ground-nesting bees near wastewater are likely most impacted, while wood cavity-nesting bees likely less impacted since plants’ ability to uptake contaminants are species dependent. We compared gut microbiomes of directly exposed soil-nestingHalictus ligatusand indirectly exposed wood-nestingCeratinaspp. upstream/downstream of wastewater. We collected bees, flowers, and soil, and analyzed their bacteria microbiomes (16S rRNA). Wastewater altered ground-nestingH. ligatusmicrobiome >18 times greater than wood cavity-nestingCeratinaadults.Ceratinalarvae and pollen provisions showed significant but smaller shifts. Conversely, soil and flower microbiomes remained stable, indicating higher resilience. These results demonstrate that exposure routes drive contaminants susceptibility, with animal-associated microbes most vulnerable. Because bees are important pollinators and biodiversity contributors, these disruptions point to broader ecological risks in increasingly contaminated landscapes. Abstract Figuremore » « lessFree, publicly-accessible full text available September 15, 2026
- 
            Host temperature and gut chemistry can shape resistance to parasite infection. Heat and acidity can limit trypanosomatid infection in warm-blooded hosts and could shape infection resistance in insects as well. The colony-level endothermy and acidic guts of social bees provide unique opportunities to study how temperature and acidity shape insect–parasite associations. We compared temperature and pH tolerance between three trypanosomatid parasites from social bees and a related trypanosomatid from poikilothermic mosquitoes, which have alkaline guts. Relative to the mosquito parasites, all three bee parasites had higher heat tolerance that reflected body temperatures of hosts. Heat tolerance of the honeybee parasite Crithidia mellificae was exceptional for its genus, implicating honeybee endothermy as a plausible filter of parasite establishment. The lesser heat tolerance of the emerging Lotmaria passim suggests possible spillover from a less endothermic host. Whereas both honeybee parasites tolerated the acidic pH found in bee intestines, mosquito parasites tolerated the alkaline conditions found in mosquito midguts, suggesting that both gut pH and temperature could structure host–parasite specificity. Elucidating how host temperature and gut pH affect infection—and corresponding parasite adaptations to these factors—could help explain trypanosomatids' distribution among insects and invasion of mammals.more » « less
- 
            Abstract Gut symbionts can augment resistance to pathogens by stimulating host-immune responses, competing for space and nutrients, or producing antimicrobial metabolites. Gut microbiota of social bees, which pollinate many crops and wildflowers, protect hosts against diverse infections and might counteract pathogen-related bee declines. Bumble bee gut microbiota, and specifically abundance of Lactobacillus ‘Firm-5’ bacteria, can enhance resistance to the trypanosomatid parasite Crithidia bombi . However, the mechanism underlying this effect remains unknown. We hypothesized that the Firm-5 bacterium Lactobacillus bombicola , which produces lactic acid, inhibits C. bombi via pH-mediated effects. Consistent with our hypothesis, L. bombicola spent medium inhibited C. bombi growth via reduction in pH that was both necessary and sufficient for inhibition. Inhibition of all parasite strains occurred within the pH range documented in honey bees, though sensitivity to acidity varied among strains. Spent medium was slightly more potent than HCl, d - and l -lactic acids for a given pH, suggesting that other metabolites also contribute to inhibition. Results implicate symbiont-mediated reduction in gut pH as a key determinant of trypanosomatid infection in bees. Future investigation into in vivo effects of gut microbiota on pH and infection intensity would test the relevance of these findings for bees threatened by trypanosomatids.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
